3.224 \(\int (c+d x) \sin ^2(a+b x) \tan (a+b x) \, dx\)

Optimal. Leaf size=115 \[ \frac {i d \text {Li}_2\left (-e^{2 i (a+b x)}\right )}{2 b^2}-\frac {d \sin (a+b x) \cos (a+b x)}{4 b^2}-\frac {(c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{b}-\frac {(c+d x) \sin ^2(a+b x)}{2 b}+\frac {d x}{4 b}+\frac {i (c+d x)^2}{2 d} \]

[Out]

1/4*d*x/b+1/2*I*(d*x+c)^2/d-(d*x+c)*ln(1+exp(2*I*(b*x+a)))/b+1/2*I*d*polylog(2,-exp(2*I*(b*x+a)))/b^2-1/4*d*co
s(b*x+a)*sin(b*x+a)/b^2-1/2*(d*x+c)*sin(b*x+a)^2/b

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {4407, 4404, 2635, 8, 3719, 2190, 2279, 2391} \[ \frac {i d \text {PolyLog}\left (2,-e^{2 i (a+b x)}\right )}{2 b^2}-\frac {d \sin (a+b x) \cos (a+b x)}{4 b^2}-\frac {(c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{b}-\frac {(c+d x) \sin ^2(a+b x)}{2 b}+\frac {d x}{4 b}+\frac {i (c+d x)^2}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)*Sin[a + b*x]^2*Tan[a + b*x],x]

[Out]

(d*x)/(4*b) + ((I/2)*(c + d*x)^2)/d - ((c + d*x)*Log[1 + E^((2*I)*(a + b*x))])/b + ((I/2)*d*PolyLog[2, -E^((2*
I)*(a + b*x))])/b^2 - (d*Cos[a + b*x]*Sin[a + b*x])/(4*b^2) - ((c + d*x)*Sin[a + b*x]^2)/(2*b)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 3719

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*(m + 1)), x
] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*(e + f*x)))/(1 + E^(2*I*(e + f*x))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 4404

Int[Cos[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[((c +
d*x)^m*Sin[a + b*x]^(n + 1))/(b*(n + 1)), x] - Dist[(d*m)/(b*(n + 1)), Int[(c + d*x)^(m - 1)*Sin[a + b*x]^(n +
 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]

Rule 4407

Int[((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.)*Tan[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> -Int[
(c + d*x)^m*Sin[a + b*x]^n*Tan[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Sin[a + b*x]^(n - 2)*Tan[a + b*x]^p, x]
/; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int (c+d x) \sin ^2(a+b x) \tan (a+b x) \, dx &=-\int (c+d x) \cos (a+b x) \sin (a+b x) \, dx+\int (c+d x) \tan (a+b x) \, dx\\ &=\frac {i (c+d x)^2}{2 d}-\frac {(c+d x) \sin ^2(a+b x)}{2 b}-2 i \int \frac {e^{2 i (a+b x)} (c+d x)}{1+e^{2 i (a+b x)}} \, dx+\frac {d \int \sin ^2(a+b x) \, dx}{2 b}\\ &=\frac {i (c+d x)^2}{2 d}-\frac {(c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{b}-\frac {d \cos (a+b x) \sin (a+b x)}{4 b^2}-\frac {(c+d x) \sin ^2(a+b x)}{2 b}+\frac {d \int 1 \, dx}{4 b}+\frac {d \int \log \left (1+e^{2 i (a+b x)}\right ) \, dx}{b}\\ &=\frac {d x}{4 b}+\frac {i (c+d x)^2}{2 d}-\frac {(c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{b}-\frac {d \cos (a+b x) \sin (a+b x)}{4 b^2}-\frac {(c+d x) \sin ^2(a+b x)}{2 b}-\frac {(i d) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{2 i (a+b x)}\right )}{2 b^2}\\ &=\frac {d x}{4 b}+\frac {i (c+d x)^2}{2 d}-\frac {(c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{b}+\frac {i d \text {Li}_2\left (-e^{2 i (a+b x)}\right )}{2 b^2}-\frac {d \cos (a+b x) \sin (a+b x)}{4 b^2}-\frac {(c+d x) \sin ^2(a+b x)}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 134, normalized size = 1.17 \[ \frac {d \left (\frac {1}{2} i \text {Li}_2\left (-e^{2 i (a+b x)}\right )+\frac {1}{2} i (a+b x)^2-(a+b x) \log \left (1+e^{2 i (a+b x)}\right )\right )}{b^2}-\frac {d \sin (2 (a+b x))}{8 b^2}+\frac {a d \log (\cos (a+b x))}{b^2}-\frac {c \left (\log (\cos (a+b x))-\frac {1}{2} \cos ^2(a+b x)\right )}{b}+\frac {d x \cos (2 (a+b x))}{4 b} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)*Sin[a + b*x]^2*Tan[a + b*x],x]

[Out]

(d*x*Cos[2*(a + b*x)])/(4*b) + (a*d*Log[Cos[a + b*x]])/b^2 - (c*(-1/2*Cos[a + b*x]^2 + Log[Cos[a + b*x]]))/b +
 (d*((I/2)*(a + b*x)^2 - (a + b*x)*Log[1 + E^((2*I)*(a + b*x))] + (I/2)*PolyLog[2, -E^((2*I)*(a + b*x))]))/b^2
 - (d*Sin[2*(a + b*x)])/(8*b^2)

________________________________________________________________________________________

fricas [B]  time = 0.49, size = 346, normalized size = 3.01 \[ -\frac {b d x - 2 \, {\left (b d x + b c\right )} \cos \left (b x + a\right )^{2} + d \cos \left (b x + a\right ) \sin \left (b x + a\right ) + 2 i \, d {\rm Li}_2\left (i \, \cos \left (b x + a\right ) + \sin \left (b x + a\right )\right ) - 2 i \, d {\rm Li}_2\left (i \, \cos \left (b x + a\right ) - \sin \left (b x + a\right )\right ) - 2 i \, d {\rm Li}_2\left (-i \, \cos \left (b x + a\right ) + \sin \left (b x + a\right )\right ) + 2 i \, d {\rm Li}_2\left (-i \, \cos \left (b x + a\right ) - \sin \left (b x + a\right )\right ) + 2 \, {\left (b c - a d\right )} \log \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right ) + i\right ) + 2 \, {\left (b c - a d\right )} \log \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right ) + i\right ) + 2 \, {\left (b d x + a d\right )} \log \left (i \, \cos \left (b x + a\right ) + \sin \left (b x + a\right ) + 1\right ) + 2 \, {\left (b d x + a d\right )} \log \left (i \, \cos \left (b x + a\right ) - \sin \left (b x + a\right ) + 1\right ) + 2 \, {\left (b d x + a d\right )} \log \left (-i \, \cos \left (b x + a\right ) + \sin \left (b x + a\right ) + 1\right ) + 2 \, {\left (b d x + a d\right )} \log \left (-i \, \cos \left (b x + a\right ) - \sin \left (b x + a\right ) + 1\right ) + 2 \, {\left (b c - a d\right )} \log \left (-\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right ) + i\right ) + 2 \, {\left (b c - a d\right )} \log \left (-\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right ) + i\right )}{4 \, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)*sin(b*x+a)^3,x, algorithm="fricas")

[Out]

-1/4*(b*d*x - 2*(b*d*x + b*c)*cos(b*x + a)^2 + d*cos(b*x + a)*sin(b*x + a) + 2*I*d*dilog(I*cos(b*x + a) + sin(
b*x + a)) - 2*I*d*dilog(I*cos(b*x + a) - sin(b*x + a)) - 2*I*d*dilog(-I*cos(b*x + a) + sin(b*x + a)) + 2*I*d*d
ilog(-I*cos(b*x + a) - sin(b*x + a)) + 2*(b*c - a*d)*log(cos(b*x + a) + I*sin(b*x + a) + I) + 2*(b*c - a*d)*lo
g(cos(b*x + a) - I*sin(b*x + a) + I) + 2*(b*d*x + a*d)*log(I*cos(b*x + a) + sin(b*x + a) + 1) + 2*(b*d*x + a*d
)*log(I*cos(b*x + a) - sin(b*x + a) + 1) + 2*(b*d*x + a*d)*log(-I*cos(b*x + a) + sin(b*x + a) + 1) + 2*(b*d*x
+ a*d)*log(-I*cos(b*x + a) - sin(b*x + a) + 1) + 2*(b*c - a*d)*log(-cos(b*x + a) + I*sin(b*x + a) + I) + 2*(b*
c - a*d)*log(-cos(b*x + a) - I*sin(b*x + a) + I))/b^2

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (d x + c\right )} \sec \left (b x + a\right ) \sin \left (b x + a\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)*sin(b*x+a)^3,x, algorithm="giac")

[Out]

integrate((d*x + c)*sec(b*x + a)*sin(b*x + a)^3, x)

________________________________________________________________________________________

maple [A]  time = 0.34, size = 179, normalized size = 1.56 \[ \frac {i d \,x^{2}}{2}-i c x +\frac {\left (2 b d x +2 c b +i d \right ) {\mathrm e}^{2 i \left (b x +a \right )}}{16 b^{2}}+\frac {\left (2 b d x +2 c b -i d \right ) {\mathrm e}^{-2 i \left (b x +a \right )}}{16 b^{2}}-\frac {c \ln \left (1+{\mathrm e}^{2 i \left (b x +a \right )}\right )}{b}+\frac {2 c \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b}+\frac {2 i d a x}{b}+\frac {i d \,a^{2}}{b^{2}}-\frac {d \ln \left (1+{\mathrm e}^{2 i \left (b x +a \right )}\right ) x}{b}+\frac {i d \polylog \left (2, -{\mathrm e}^{2 i \left (b x +a \right )}\right )}{2 b^{2}}-\frac {2 d a \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)*sec(b*x+a)*sin(b*x+a)^3,x)

[Out]

1/2*I*d*x^2-I*c*x+1/16*(2*b*d*x+I*d+2*c*b)/b^2*exp(2*I*(b*x+a))+1/16*(2*b*d*x-I*d+2*c*b)/b^2*exp(-2*I*(b*x+a))
-1/b*c*ln(1+exp(2*I*(b*x+a)))+2/b*c*ln(exp(I*(b*x+a)))+2*I/b*d*a*x+I/b^2*d*a^2-1/b*d*ln(1+exp(2*I*(b*x+a)))*x+
1/2*I*d*polylog(2,-exp(2*I*(b*x+a)))/b^2-2/b^2*d*a*ln(exp(I*(b*x+a)))

________________________________________________________________________________________

maxima [A]  time = 0.52, size = 145, normalized size = 1.26 \[ -\frac {-4 i \, b^{2} d x^{2} - 8 i \, b^{2} c x + {\left (8 i \, b d x + 8 i \, b c\right )} \arctan \left (\sin \left (2 \, b x + 2 \, a\right ), \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) - 2 \, {\left (b d x + b c\right )} \cos \left (2 \, b x + 2 \, a\right ) - 4 i \, d {\rm Li}_2\left (-e^{\left (2 i \, b x + 2 i \, a\right )}\right ) + 4 \, {\left (b d x + b c\right )} \log \left (\cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (2 \, b x + 2 \, a\right )^{2} + 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) + d \sin \left (2 \, b x + 2 \, a\right )}{8 \, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)*sin(b*x+a)^3,x, algorithm="maxima")

[Out]

-1/8*(-4*I*b^2*d*x^2 - 8*I*b^2*c*x + (8*I*b*d*x + 8*I*b*c)*arctan2(sin(2*b*x + 2*a), cos(2*b*x + 2*a) + 1) - 2
*(b*d*x + b*c)*cos(2*b*x + 2*a) - 4*I*d*dilog(-e^(2*I*b*x + 2*I*a)) + 4*(b*d*x + b*c)*log(cos(2*b*x + 2*a)^2 +
 sin(2*b*x + 2*a)^2 + 2*cos(2*b*x + 2*a) + 1) + d*sin(2*b*x + 2*a))/b^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\sin \left (a+b\,x\right )}^3\,\left (c+d\,x\right )}{\cos \left (a+b\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((sin(a + b*x)^3*(c + d*x))/cos(a + b*x),x)

[Out]

int((sin(a + b*x)^3*(c + d*x))/cos(a + b*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (c + d x\right ) \sin ^{3}{\left (a + b x \right )} \sec {\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)*sin(b*x+a)**3,x)

[Out]

Integral((c + d*x)*sin(a + b*x)**3*sec(a + b*x), x)

________________________________________________________________________________________